
© 2016 IBM Corporation

DB2 for z/OS Distributed Data
Facility Questions ïand Answers

Central Ohio DB2 Users Group

Robert Catterall, IBM

rfcatter@us.ibm.com

May 13, 2016

Agenda

ÅDDF monitoring and tuning

ÅDDF application architecture

ÅDDF workload management and control

ÅDDF and data security

2

DDF monitoring

and tuning

Q: Why is CPU time so high for the DDF
address space?

ÅThe question is prompted by information like this, from a DB2

monitor statistics long report (this was for a 2-hour interval):

ÅPeople are used to seeing relatively small CPU times for DB2

address spaces ïwhat gives here?

Á Is something wrong?

Á Is DDF a pig?

3

CPU TIMES TCB TIME PREEMPT SRB NONPREEMPT SRB PREEMPT IIP SRB

----------- -------- ------------- -------------- ---------------

SYSTEM SVCS 12.646 0.000 2:03.883 N/A

DB SVCS 5:33.773 0.004 50:05.190 0.394

IRLM 0.003 0.000 21.245 N/A

DDF 1:02.659 3:13:21.699 2:10.283 2:55:43.179

More than 6 hours of DDF CPU time

DDF CPU time ïitôs an SQL thing

ÅTypically, the vast majority of DDFôs CPU time simply reflects the

cost of executing SQL statements that come through DDF

ÁReferring to DB2 monitor statistics long report snippet on the preceding

slide, the CPU times in the two ñpreemptible SRBò columns of the DDF

row indicate the cost of executing DDF-related SQL statements

ÅSQL statements from DRDA requesters run under DDF preemptible SRBs

ÅFigures in the two preemptible SRB columns for DDF show the general-

purpose and zIIP engine CPU time consumed in executing DDF-related

SQL statements

ÅIn this example, 6 hours and 9 minutes (about 99%) of DDF CPU time is

SQL statement execution time ïfigures in ñTCB timeò and ñnon-preemptible

SRB timeò columns show CPU consumed by DDF ñsystemò tasks

ÁComing through DDF does not make SQL statements more expensive

ïsame SQL statements from a CICS region would have increased

CPU consumption of that address space by about the same amount

4

Q: Why am I not seeing the DDF zIIP offload
I expected?

ÅLots of folks know that SQL

statements coming through

DDF are zIIP-offloadable to

the tune of 55-60%

ÅSometimes people see

information like this in a DB2

monitor accounting long

report, and they see that zIIP

CPU time is considerably less

than 60% of the total ïwhy?

5

AVERAGE APPL(CL.1)

------------ ----------

CP CPU TIME 0.003680

AGENT 0.003680

NONNESTED 0.003614

STORED PRC 0.000052

PAR.TASKS 0.000000

SECP CPU 0.000410

SE CPU TIME 0.003397

NONNESTED 0.003383

STORED PROC 0.000000

A

B

In this report, data was aggregated
at the DB2 connection type level ,
and this is from the DRDA section
of the report

C

D

E

òB / (A+B) is only 48% here, not 55-60%. How come?ó

Explaining less-than-expected DRDA zIIP
offload (1)

ÅCheck stored procedure CPU time (two fields, labeled ñCò and
ñDò on the report snippet on the preceding slide)

Á If C is much larger than D (and here, D is zero), that indicates

that stored procedures are mostly (maybe all) of the external

variety (versus native SQL procedures)

ÁExternal stored procedures always run under TCBs (in a stored

procedure address space) and so are not zIIP-eligible, even

when called by DRDA requesters (more on this to come)

6

Less-than-expected DRDA zIIP offload (2)

ÅCheck ñSECP CPUò time (translation: zIIP-eligible work done by a

general-purpose engine ïlabeled with an ñEò on slide 5)

Á If zIIP-eligible work is ready for dispatch and zIIP engines are busy,

z/OS waits a few milliseconds and then dispatches the work to a

general-purpose engine

ÁCheck what I call the ñzIIP spill-over percentageò (E/(B+E) on slide 5)

ÅA small but non-zero value is OK, but if itôs over 5% (figure from slide 5 is

almost 11%), Iôd be concerned about a zIIP engine contention situation

ÅGet with z/OS systems programmer to check on zIIP engine utilization ï

zIIP contention can become a concern when zIIP utilization gets to about

60% (or less, depending on the number of zIIPs in the LPAR)

ÅzIIP over-utilization is of greater consequence in DB2 10 or later system,

because prefetch is 100% zIIP-eligible ïyou donôt want to delay that

ÅYou can have up to 2 zIIPs per general-purpose engine with a zEC12 or

z13, and adding zIIP capacity does not increase software costs

7

Q: How can I increase zIIP offload for my DDF
workload?
ÅIf you have external stored procedures called through DDF, start

replacing them with native SQL procedures (see slide 6)

ÅWhile an external stored procedure always runs under a TCB in a

stored procedure address space, a native SQL procedure always

runs under the task of the calling application process

Á If process is a DRDA requester, z/OS task will be an enclave SRB in the

DDF address space ïthat makes native SQL procedure zIIP-eligible

ÁDitto for compiled SQL scalar user-defined functions (DB2 10 NFM)

ÅThe low hanging fruit are external stored procedures that:

1. Access only DB2 data (vs., for example, VSAM data)

2. Are executed frequently (maximize shift of CPU usage to zIIP engines)

3. Are relatively simple (coding replacement native SQL procedures will

be relatively quick and easy)

8

Q: How do I know if I have enough DBATs?

ÅOne means of finding out is this DB2 command:

Á - DISPLAY DDF DETAIL

ÁIn the output of this command youôll see a line that looks like this:

ÁDSNL092I ADBAT= 1 QUEDBAT= 0

ÁValue in the QUEDBAT field shows the cumulative number of times

(since DDF was last started ïwhich is probably when DB2 was last

started) that DDF requests had to wait for a DBAT to become available

ÅIf the value is greater than zero, you should probably increase the number

of DBATs for the DB2 subsystem (set MAXDBAT in ZPARM to a higher

value)

ÅRemember, DB2 10 increased by 10X the number of threads (DBATs and

local threads) that can be concurrently active for a subsystem ïassuming

that packages were bound or rebound in a DB2 10 or later environment

9

Another way of checking on DBATs (and
connections)

ÅLook at a DB2 monitor statistics long report (or an online

display of subsystem statistics), find the section on DDF

activity, and check on these two fields:

ÅIf field ñAò is non-zero, you hit the MAXDBAT limit, and you

should probably increase the value of this parameter in ZPARM

ÅIf field ñBò is non-zero, you hit the CONDBAT limit (maximum

number of connections to this DB2 subsystem) ïincrease it

ÅCONDBAT value should be at least 2X the MAXDBAT value

10

GLOBAL DDF ACTIVITY QUANTITY

--------------------------- --------

DBAT/CONN QUEUED- MAX ACTIVE 0.00

CONN REJECTED- MAX CONNECTED 0.00

A

B

Q: How can I boost the CPU efficiency of my
DDF workload?

ÅLeverage high-performance DBAT functionality

ÁStarting with DB2 10 (conversion mode), when a package bound with

RELEASE(DEALLOCATE) is executed by way of a ñregularò DBAT,

that DBAT becomes a high-performance DBAT

ÁRather than going back into the DBAT pool at transaction completion,

a high-performance DBAT will stay dedicated to connection through

which it was instantiated, until it has been reused by 200 transactions

ÁCPU savings come from the combination of a persistent thread (a

thread that persists through commits) and RELEASE(DEALLOCATE)

packages

ÅConceptually like RELEASE(DEALLOCATE) + CICS-DB2 protected

entry threads

ÅIn-DB2 CPU time can be reduced by 10% or more for simple transactions

11

Q: Can you use high-performance DBATs
selectively?

ÅYes ïremember that instantiation of high-performance DBATs

depends on execution of RELEASE(DEALLOCATE) packages

ÁSo, selective binding of packages executed by DRDA requesters is one

control mechanism

ÅExample: bind the package of a stored procedure with

RELEASE(DEALLOCATE), and the DRDA requester that calls the stored

procedure will use a high-performance DBAT

ÁAnother option: bind IBM Data Server Driver packages (or DB2 Connect

packages) into default NULLID collection with RELEASE(COMMIT), and

into another collection with RELEASE(DEALLOCATE)

ÅThen, by way of a client-side data source property, point DDF-using

applications to the one collection or the other, depending on whether or not

you want an application to use high-performance DBATs

12

Q: Should I adjust MAXDBAT for
high-performance DBATs?

ÅYES ïwhen a transaction using a high-performance DBAT

completes, the high-performance DBAT does NOT go back into the

DBAT pool

Á Instead, it stays dedicated to the client connection through which it was

instantiated, until it has been reused by 200 transactions

ÁTHEREFORE, the more high-performance DBATs you have at a given

time, the fewer ñregularò DBATs you have in the DBAT pool

ÁGiven a high-enough number of connections from client applications

executing RELEASE(DEALLOCATE) packages, and a small enough

MAXDBAT value, ALL of a DB2 systemôs DBATs could go high-

performance

ÅThat would mean zero DBATs in the pool ïa situation youôd want to avoid

ÅSO, before starting to use high-performance DBATs, consider increasing

MAXDBAT value, and monitor high-performance DBAT activity (next slide)

13

Keeping an eye on high-performance DBATs

ÅIn a DB2 monitor statistics long report, look for these fields in

the ñDDF activityò section of the report:

ÅIf the number in the field that I have circled in red (high-water

mark for high-performance DBATs) gets anywhere near your

MAXDBAT value, make MAXDBAT bigger

ÁDo this to ensure that youôll have a decent number of ñregularò

DBATs in the DBAT pool

14

GLOBAL DDF ACTIVITY QUANTITY

--------------------------- --------

CUR ACTIVE DBATS- BND DEALLC 0.00

HWM ACTIVE DBATS- BND DEALLC 0.00

Q: For monitoring, how do I distinguish
applications?

ÅOften, DDF applications are identified in DB2 monitor accounting

reports and online displays by authorization ID

ÅWhat if different applications connect to DB2 using the same ID?

Á In that case, an option for application differentiation is workstation name

ÁEasily set for an application, by several means:

ÅWebSphere Application Server: use the administration console GUI to set

workstation name as an extended property of an applicationôs data source

ÅVia application code, using Java API setClientInfo (for JDBC 4.0 and later)

ÅOnce workstation name is set, you can have your DB2 monitor

generate accounting reports with data ordered by that identifier

ÅMore information: sections 5.5, 8.2 of IBM redbook, DB2 for z/OS

and WebSphere Integration for Enterprise Java Applications

Áhttp://www.redbooks.ibm.com/abstracts/sg248074.html?Open

15

DDF application

architecture

Q: We use DB2 Connect ñgatewayò servers ï
should we?

ÅNo ïgoing directly from application server to DB2 for z/OS, using

the IBM Data Server Driver Package, is what you should be doing

ÅBenefits: simplified IT infrastructure, better performance (owing to

the fact that ñhopò to DB2 Connect gateway server is eliminated)

ÅAnother benefit: quicker problem source identification

ÁSuppose that you have an authentication error caused by use of the

incorrect password by an application requesting a connection to DB2

ÁDB2 error message (DSNL030I) will provide, in THREAD-INFO part

of the message text, the IP address*of the ñadjacentò (to DB2) server

ÅThat will be the address of a DB2 Connect gateway server, if thatôs what
you use, and you wonôt know which of the application servers ñupstreamò

from the DB2 Connect gateway server got the authentication error

17

* See IBM òTechnoteó at http://www-01.ibm.com/support/docview.wss?uid=swg21055269
for information on how to interpret the IP address value in the DSNL030I message

More on the IBM Data Server Driver vs. DB2
Connect

ÅEntitlement to use the IBM Data Server Driver Package is by way

of your DB2 Connect license, so if you are licensed for DB2

Connect then you can use the Data Server Driver Package

ÁExample: DB2 Connect Unlimited Edition license enables unlimited

use of IBM Data Server Driver Package for associated DB2 system(s)

ÁException to the rule: a ñconcurrent userò DB2 Connect license

requires use of the gateway server configuration

ÅThe Data Server Driver has virtually all the functionality of DB2

Connect (Sysplex workload balancing, connection pooling,

transaction pooling, etc.)

ÁThat said, if you have an application that needs two-phase commit

capability AND the client transaction manager uses a dual-transport

processing model, you need to use DB2 Connect

ÅWebSphere Application Server uses a single-transport processing model

18

Q: Why are my DDF applications getting thread
timeouts?
ÅCould be that client-side programs are keeping connections from

going inactive, and the threads end up timing out instead

ÁQuite possible that some client-side programmers are not familiar with

the DB2 concept of an inactive connection

ÁWhen DB2 for z/OS is the server, you WANT an application connection

to go into an inactive state when a transaction completes

ÅNot knowing this, a client-side programmer might have something like

SELECT 1 FROM SYSIBM.SYSDUMMY1 issued periodically from a DDF-

using application, just to keep connection to DB2 ñaliveò ïDONôT DO THAT

ÁAnother factor: a connection wonôt go inactive unless there is a ñcleanò

commit at end-of-transaction ïno WITH HOLD cursors left open, no

un-dropped declared global temp tables

ÁALSO: a developer who codes a read-only transaction may think that a

commit is not necessary ïit is necessary if you want to release locks,

and a connection wonôt go inactive if the DBAT holds locks

19

Q: Are there considerations for nested stored
procedures?

ÅYes ïfor one thing, you want to return result sets from nested

stored procedures the right way

ÅSuppose program A calls stored procedure X, which calls stored

procedure Y, which generates a result set that is to be returned to

program A ïhow would you get those rows to program A?

ÁOld way (before DB2 10): stored procedure Y puts result set rows in

a temporary table, and program A retrieves the rows from that table

ÅResult set of a WITH RETURN TO CALLER cursor is directly accessible

only ñone level upò in a chain of nested stored procedure calls

ÁBetter way, starting with DB2 10: stored procedure Y declares cursor

WITH RETURN TO CLIENT, and program A (program that initiated

the chain of nested stored procedure calls) then fetches rows directly

ÅSimplified coding, better performance versus the old temporary table

approach

20

