
Dan Luksetich is a senior DB2 DBA consultant. He works as a DBA, application architect,
presenter, author, and teacher. Dan has been in the information technology business for
over 30 years, and has worked with DB2 for over 25 years. He has been a COBOL and BAL
programmer, DB2 system programmer, DB2 DBA, and DB2 application architect. His
experience includes major implementations on z/OS, AIX, i Series, and Linux environments.

Dan's experience includes:

Application design and architecture
Database administration
Complex SQL
SQL tuning
DB2 performance audits
Replication
Disaster recovery
Stored procedures, UDFs, and triggers
Dan works everyday on some of the largest and most complex DB2 implementations in the
world. He is a certified DB2 DBA, system administrator, and application developer, and has
work on the teams that have developed the DB2 for z/OS certification exams. He is the
author of several DB2 related articles as well as co-author of the DB2 9 for z/OS
Certification Guide and the DB2 10 for z/OS Certification Guide.

Daniel L Luksetich

8/16/2015 Presented August 2015

8/16/2015

Daniel L Luksetich

Presented August 2015

8/16/2015

Daniel L Luksetich

Presented August 2015

Dan Luksetich is a data scientist and senior DB2 DBA consultant. He works as a DBA,
application architect, presenter, author, and teacher. Dan has been in the information
technology business for over 29 years, and has worked with DB2 for over 24 years. He has
been a COBOL and BAL programmer, DB2 system programmer, DB2 DBA, and DB2
application architect. His experience includes major implementations on z/OS, AIX, i Series,
Windows, and Linux environments.

Dan's experience includes application design and architecture, business analytics, SQL
consulting and education, database administration, complex SQL, SQL tuning, DB2
performance audits, replication, disaster recovery, stored procedures, UDFs, and triggers.
Dan works everyday on some of the largest and most complex DB2 implementations in the
world. He is a certified DB2 DBA for DB2 for z/OS and LUW, system administrator for z/OS,
and application developer, and has worked on the teams that have developed the DB2 for
z/OS certification exams. He is the author of several DB2 related articles as well as co-
author of the DB2 9 for z/OS Certification Guide and the DB2 10 for z/OS Certification
Guide.

Dan is an IBM Gold Consultant, IBM Champion for Data Management, and the chairman of
the International DB2 Users Group Content Committee.

Daniel L Luksetich

8/16/2015 Presented August 2015

No animals were harmed during testing

Daniel L Luksetich

8/16/2015 Presented August 2015

Daniel L Luksetich

8/16/2015 Presented August 2015

When most people talk about the processing of DB2 SQL statements they speak of the DB2
optimizer. What many don’t realize is that before the query passes through the optimizer it
first passes through something called query transformation. This component of the DB2
engine is critical to performance, and a vital part of query processing. In this presentation
we are only going to talk about the impact of query transformation on SQL statements that
read data. However, the query transformation component of DB2 does so much more.

It is important to understand query transformation because it is a separate piece of code
from the optimizer, owned by a separate development team within DB2 development, and
the first component to manage your queries as you send them in to be processed.

Daniel L Luksetich

8/16/2015 Presented August 2015

As a query is submitted to DB2, either dynamically at execution time or statically during the
bind process, it passes through the query transformation component of the DB2 engine.
This component is going to look at certain information about the objects being accessed in
the query, and make certain decisions as to whether or not the query is optimal as written.
If not, the query will be rewritten to present the optimizer with more optimization choices
than what was originally submitted. In addition, query transformation is looking at specific
DB2 objects and rules, and will rewrite a query such that proper optimization is possible. In
other words it fixes your poorly written queries!

Daniel L Luksetich

8/16/2015 Presented August 2015

You do not have much control over the query rewrite performed by query transformation.
We will, however, discuss some important issues and changes you can make to SQL
statements to properly work with query transformation.

There are many things that query transformation does. In this presentation we are only
touching the surface of the things that happen during query transformation. A thorough
review of the DB2 performance guide and the DB2 10 performance redbook can help
determine all that happens during query rewrite. Most importantly, you should be looking
at rewritten queries within your organization to see for yourself what is happening.

Daniel L Luksetich

8/16/2015 Presented August 2015

Back in the early days of DB2 many people were talking about efficient SQL coding
techniques. Back then you had to code statements a certain way in order to get them to
perform properly. While that is still true today it is much less so. The SQL language is very
orthogonal. This means that a statement that serves a logical purpose can be physically
written in a myriad different ways. There still can be an optimal way to write a statement,
but fewer and fewer people know how to do this, and many SQL statements are generated
by tools. Query transformation has evolved into a very valuable component that can
translate a query that serves a logical purpose into its high performing physical
counterpart.

Daniel L Luksetich

8/16/2015 Presented August 2015

Until recently in the history of DB2 it was impossible to see the rewritten query. There
existed for some time a set of “hidden” EXPLAIN tables that contained detailed information
about query optimization. These tables were finally exposed to the public with DB2 version
8. To the best of my knowledge there are two tables that hold information about your
rewritten queries.

The DSN_PREDICAT_TABLE contains information about predicates in a query. This includes
predicates that are generated during query rewrite. Complex OR’s may be rewritten to In-
lists, predicates against one table could be transitively closed to another, and more. All of
these predicates are listed in this table. While it is difficult to read, and IBM discourages
reading this table without the use of a tool, I do have an advanced EXPLAIN table query of
my own that looks at this data.

The DSN_QUERY_TABLE is another EXPLAIN table that is used by EXPLAIN tools to look at
both the original and rewritten query. The information is stored as XML documents, and
not at all easy to read with the human eye.

Daniel L Luksetich

8/16/2015 Presented August 2015

Here is the current version of my advanced EXPLAIN query:
WITH MAXTIME (COLLID, PROGNAME, QUERYNO, EXPLAIN_TIME) AS (SELECT COLLID, PROGNAME, QUERYNO, MAX(EXPLAIN_TIME)
 FROM PLAN_TABLE WHERE COLLID = 'DSNESPCS' AND PROGNAME = 'DSNESM68' AND QUERYNO = 1
 GROUP BY COLLID, PROGNAME, QUERYNO)

SELECT SUBSTR(P.PROGNAME, 1, 8) AS PROGNAME ,SUBSTR(DIGITS(P.QUERYNO), 6) CONCAT '-' CONCAT SUBSTR(DIGITS(P.QBLOCKNO), 4)
 CONCAT '-' CONCAT SUBSTR(DIGITS(P.PLANNO), 4) AS QQP ,SUBSTR(CHAR(P.METHOD), 1, 3) AS MTH
 ,SUBSTR(CHAR(F.PREDNO), 1, 3) AS P_NO,SUBSTR(CHAR(P.MERGE_JOIN_COLS), 1, 3) AS MJC
 ,SUBSTR(P.CREATOR, 1, 8) AS TBCREATOR ,SUBSTR(P.TNAME, 1, 18) AS TBNAME,SUBSTR(P.CORRELATION_NAME, 1, 8) AS CORR_NM
 ,DEC(D.ONECOMPROWS, 10, 1) AS ROWS_POST_FILTER ,P.ACCESSTYPE AS ATYP ,SUBSTR(P.ACCESSNAME, 1, 15) AS A_NM
 ,P.INDEXONLY AS IXO ,CHAR(P.MIXOPSEQ) AS MIX,CHAR(P.MATCHCOLS) MCOL,F.STAGE AS STAGE ,DEC(E.FILTER_FACTOR, 11, 10) AS FF
 ,E.BOOLEAN_TERM AS BT,SUBSTR(E.TEXT, 1, 30) AS PRED_TEXT30,P.SORTN_JOIN CONCAT P.SORTC_UNIQ CONCAT
 P.SORTC_JOIN CONCAT P.SORTC_ORDERBY CONCAT P.SORTC_GROUPBY AS NJ_CUJOG ,P.PREFETCH AS PF,P.COLUMN_FN_EVAL AS CFE
 ,P.PAGE_RANGE AS PGRNG,P.JOIN_TYPE AS JT,P.QBLOCK_TYPE AS QB_TYP,P.PARENT_QBLOCKNO AS P_QB,P.TABLE_TYPE AS TB_TYP
 ,P.EXPLAIN_TIME AS B_TM FROM PLAN_TABLE P INNER JOIN MAXTIME M ON M.COLLID = P.COLLID
AND M.PROGNAME = P.PROGNAME AND M.QUERYNO = P.QUERYNO AND M. EXPLAIN_TIME = P. EXPLAIN_TIME
LEFT JOIN DSN_FILTER_TABLE F ON M.COLLID = F.COLLID AND M.PROGNAME = F.PROGNAMEAND M.QUERYNO = F.QUERYNO AND P.QBLOCKNO = F.QBLOCKNO AND
P.PLANNO = F.PLANNO AND M. EXPLAIN_TIME = F.EXPLAIN_TIME
and P.ACCESSTYPE Not IN ('MX', 'MI', 'MU')
LEFT JOIN DSN_PREDICAT_TABLE E ON F.PROGNAME = E.PROGNAME AND F.QUERYNO = E.QUERYNO AND F.QBLOCKNO = E.QBLOCKNO
AND F.PREDNO = E.PREDNO AND M. EXPLAIN_TIME = E.EXPLAIN_TIME
LEFT JOIN TABLE (SELECT MIN(X.ONECOMPROWS) AS ONECOMPROWS
 FROM DSN_DETCOST_TABLE X WHERE M.PROGNAME = X.PROGNAME AND M.QUERYNO = X.QUERYNO
 AND P.QBLOCKNO = X.QBLOCKNO AND P.PLANNO = X.PLANNO AND M. EXPLAIN_TIME = X.EXPLAIN_TIME) AS D
ON 1=1 ORDER BY PROGNAME, B_TM, QQP, MIX, F.PREDNO;

Daniel L Luksetich

8/16/2015 Presented August 2015

Daniel L Luksetich

8/16/2015 Presented August 2015

You can see here that the rewritten query is not easy to read with the human eye. This
particular example is simply from an EXPLAIN of this query

SELECT 1 FROM SYSIBM.SYSDUMMY1

The rewrite actually did nothing to the original query. However, it is still difficult to read
unless you parse through the XML. That’s why it’s better to use a tool.

Daniel L Luksetich

8/16/2015 Presented August 2015

IBM Data Studio is available as a free download from IBM. This tool is what was used to
look at all of the rewritten queries in this presentation. This tool runs on a computer
running windows or Linux and can be used to tune queries in DB2 for z/OS and DB2 for
LUW. You need a remote connection to your database in order to run the tool.

This screen snap shows a simple SQL statement being input as text to Data Studio query
tuning. There are many sources you can draw on to input SQL statements into the tool.

Daniel L Luksetich

8/16/2015 Presented August 2015

Once a statement has been EXPLAINed using the tool, you can then choose to view the
access path, the rewritten query, or addition query information or recommendations.

This screen snap shows the transformed query. To view this I simply hit the appropriate tab
in the product.

Daniel L Luksetich

8/16/2015 Presented August 2015

As mentioned before the query transformation component of DB2 does a lot. We can only
cover so much in a short period of time. So, I’m focusing on some of what I feel are
significant features. Your results may vary, and I strongly recommend experimentation as
the best guide to how DB2 rewrites queries.

Daniel L Luksetich

8/16/2015 Presented August 2015

Remember that one of the goals of query transformation is to supply the optimizer with
appropriate access path choices. One of those choices is table access sequence for multi-
table queries. When DB2 is bringing data together from multiple tables the most efficient
access is to access the table that retrieves fewer rows first, and then access the next table,
and so on.

Sometimes tables are joined by common columns, and those columns are also referenced
in local predicates. DB2 can use the transitive property to create redundant predicates
during query rewrite. This allows for local predicates to be propagated across tables, and
thus giving the optimizer more choices for potential index access, stronger filtering, and
more efficient table access sequence.

Daniel L Luksetich

8/16/2015 Presented August 2015

The result of any subquery can be achieved by coding that subquery, the equivalent
alternate subquery, or a join.

Which is best? I don’t know. It all depends upon multiple things:
• The available indexes on the tables in the query
• Whether or not a join will introduce duplicates
• The size of the tables involved
• The size of the result sets of the portions of the queries (local table access)

It takes some skill to identify these things and code a subquery appropriately. Fortunately,
query transformation will make a lot of these considerations for you and rewrite the query
you’ve written no matter how you write it (except joins).

Daniel L Luksetich

8/16/2015 Presented August 2015

Joins are preferred. This is due to the fact that the table access sequence is more flexible,
the index choices more dynamic, and transitive closure more apparent. In other words, a
subquery is likely to be transformed into a join if it is determined that there are good
indexes to support first access to either table. Sometimes a sort will be introduced to avoid
duplicates in the result set.

Daniel L Luksetich

8/16/2015 Presented August 2015

This very cool example shows a non-correlated subquery rewritten as a correlated
subquery. In addition, DB2 was able to use transitive closure to add a redundant predicate
against the employee table.

In this particular case DB2 is trying to accommodate what can be a rather inefficient
subquery. The original query has to access the department table first, however there is a
local predicate on the MGRNO column. This is the same column that is used on the right
side of the predicate against the EMP table in the outer portion of the query. DB2 can apply
transitive closure to create a local predicate against the EMP table EMPNO column. Since
the EMPNO column is a unique primary key on the EMP table it is probably more efficient
to access that table first. So DB2 rewrites the non-correlated query, which would have
accessed the DEPT table first, into a correlated subquery, which will access the EMP table
first.

Daniel L Luksetich

8/16/2015 Presented August 2015

This particular example shows a non-correlated subquery transformed into a join. This is
probably due to the fact that there are no local predicates. DB2 then wants to have the
ability to access either table first in the table access sequence and a join will enable this.

What is not shown here is that the join will have to contain a sort to eliminate duplicates.
Most likely the DEPT table is access first, which is the opposite of the original query.

Daniel L Luksetich

8/16/2015 Presented August 2015

DB2 can transform subqueries many difference ways, and typically you do not have control
over this. It attempts to make the best decision based upon table and indexes designs, as
well as statistics.

There are 2 types of subquery transformations - 1) QST rewrite from subquery to join,
which only happens in limited situations (for example, non-correlated subquery is unique,
or simple correlated unique or duplicate), and 2) by APS (with help from QST). If QST does
the rewrite to join, then APS cannot undo this. If APS sees a subquery (QST didn't rewrite),
then this is where it may cost the correlated and non-correlated form.

Daniel L Luksetich

8/16/2015 Presented August 2015

There are many situations in which subqueries are not transformed. If you want to defeat
subquery transformation you may want to try some of this. I recommend against doing
that, but there are always exceptions.

Daniel L Luksetich

8/16/2015 Presented August 2015

DB2 query transformation aggressively merges nested table expressions and views
referenced in a query into the text of the query. This is because it relies on the basic idea
that merging an expression into a query is more efficient than materializing the view or
table expression.

Daniel L Luksetich

8/16/2015 Presented August 2015

In this simple example a table expression that reads the DEPT sample table is referenced in
an outer SELECT. DB2 query transformation determines that there is nothing in the table
expression (aggregate function, non-deterministic function or expression, DISTINCT, and
more) that would force it to have to materialize the expression. Therefore, the table
expression is merged with the outer statement and sent on to optimization.

Daniel L Luksetich

8/16/2015 Presented August 2015

In this example there is an ORDER BY in the table expression which results in a sort of the
data because no index exists to support sort avoidance. Thus a merge cannot be avoided
and the table expression will be materialized.

Daniel L Luksetich

8/16/2015 Presented August 2015

Here is the same query as the previous slide, but I’ve added an ORDER BY ORDER OF clause
as part of the final query. Query transformation will take the ORDER of clause and the
ORDER BY statement that it references, and add another ORDER BY clause. This results in
this statement ordering twice instead of once.

It is important to not that an ORDER OF clause is not useful for avoiding a sort, and will
probably introduce additional sorts.

Daniel L Luksetich

8/16/2015 Presented August 2015

This is an example of a situation in which merge may not be such a good thing. With the speed of processing
improvements to sorts and workfile management sorts and materialization are not as expensive as they were
in previous releases of DB2. When a view or table expression is merged with the outer statement that
references it that merge is literal. Everything that is referenced in the table expression is merged with
whatever references it in the outer statement. In this example there exists a reference to a couple of built-in
DB2 functions. Since no rule for materialization was found in the table expression DB2 determines it can be
merged to the outer statement. The outer statement has multiple references to the result of the expression
in the referenced nested table expression. That particular expression, the execution of the two DB2 built-in
functions, is then repeated for each reference to the result in the outer statement during rewrite. What
ultimately happens in this case is that a series of functions that are coded once in the original statement are
executed three times per row in the rewritten statement. In the case of complex embedded expressions with
many references to generated data you may want to consider forcing materialization of the nested table
expression. I typically do this by adding a RAND() function within the table expression. DB2 11 for z/OS has
introduced a potential performance improvement to repeated executions of expressions in merged nested
table expressions with the introduction of a feature called “expression sharing”. This feature is currently
activated via a hidden installation parameter, QUERY_REWRITE_DEGREE, which is set to 1 by default. Setting
the value to 2 will enable expression sharing and enable the reuse of expression results in the outer portion
of the query. This would, in effect, get all of the advantages of merge without the overhead of repeated
expression execution. Keep in mind that this is a hidden installation parameter that applies to the entire
subsystem and should be tested with extreme caution and under the guidance of IBM to see if it will help in
your environment.

Daniel L Luksetich

8/16/2015 Presented August 2015

Daniel L Luksetich

8/16/2015 Presented August 2015

DB2 query transformation has the ability to now match data types for mismatched
columns. This can happen for host variables as well as for joined columns.

In this particular example we are joining two tables together by columns that do not match
data types. Query transformation will introduce a CAST expression to cast the data types to
a compatibility. This also can influence the table access sequence, as the optimizer will
want to access the table with the expression on the join column first in order to use an
index to the table without the expression on its join column. Your results may vary and the
query transformation component may as well take indexes into consideration when
determining which column to CAST.

Daniel L Luksetich

8/16/2015 Presented August 2015

You can defeat the introduction of CAST expressions for mismatched data types in query
transformation by introducing your own CAST expression to do the conversion. In this way
you do two things:

1. You defeat the introduction of a CAST expression by query transformation
2. You influence the table access sequence by forcing access to the table on which the

CAST expression has been coded first.

This technique is a strong influence on both query transformation and the optimizer.

Daniel L Luksetich

8/16/2015 Presented August 2015

In much a similar way to the merging of nested table expressions, views are literally
merged into the text of the statement that references them.

This simple example demonstrates the merging of a view on the EMP table into the
statement that references it. The existence of the view is not even apparent in the
rewritten query.

Daniel L Luksetich

8/16/2015 Presented August 2015

This example demonstrates two things; view merge and predicate transitive closure. Here
the original query joins the department table to the VEMP view on the department number
column. Query transformation first merges the view into the referencing statement, and
then predicate transitive closure is applied. Since there is a local predicate on the
department table, D.DEPTNO = ‘A00’, and a join predicate joining that column to the
employee table, D.DEPTNO=E.WORKDEPT (via the view), DB2 query transformation is able
to introduce a redundant predicate against the employee table. This redundant predicate,
AND EMP.WORKDEPT=‘A00’, allows the optimizer to pick with table is access first
depending upon table size and available indexes. More access path choices means more
potential query performance.

Predicate transitive closure in this case is possible due to the fact that this is an inner join.

Daniel L Luksetich

8/16/2015 Presented August 2015

In the case of an outer join DB2 cannot apply transitive closure for the D.DEPTNO
predicate. This is because if that predicate was applied to the EMP table it would eliminate
the chance of null values for the EMP table in the join and that eliminates the query as an
outer join, which can change the query result. Since query accuracy is paramount then
transitive closure cannot be applied.

I sometimes convert inner joins to outer joins if the result will not be impacted and I need
to influence the table access sequence and reduce the chance for predicate transitive
closure to be applied. This is when I’m doing specific performance tuning and want DB2 to
pick the outer table (table on left side of a left outer join for example) first in the table join
sequence.

Daniel L Luksetich

8/16/2015 Presented August 2015

Transitive closure is not available to LIKE, IN, and subqueries in DB2 9 for z/OS. For DB2 10
and 11 In-lists are available for transitive closure.

I sometimes introduce a local predicate that is not available for transitive closure in order
to avoid transitive closure and influence table access sequence, especially for inner joins.

Daniel L Luksetich

8/16/2015 Presented August 2015

When you access a table expression or view that contains a UNION ALL you must be very
careful. It is a balance between materialization, merge, and redundant table access. Every
query is different and so these types of queries should always be examined in great detail
to see exactly what DB2 query transformation and optimization is doing with these queries,
and possibly changing them to improve the performance.

Daniel L Luksetich

8/16/2015 Presented August 2015

In this example the EMP table is joined to two other tables in a referenced nested table
expression. How many times is the EMP table accessed in this statement? Well, if you just
looked at the original query you would think once, but the rewritten query shows that the
table expression has been merged with the outer statement that references it. This means
that materialization of the table expression was avoided, but the access to the EMP table
was distributed across both query blocks of the UNION. Thus the EMP table is actually
accessed twice in the query execution!

Daniel L Luksetich

8/16/2015 Presented August 2015

In addition to joins being distributed across query blocks of a UNION in a table expression
or view, predicates can also be distributed as well.

Daniel L Luksetich

8/16/2015 Presented August 2015

In this specific example the original query had a join from the EMP table to a table
expression containing a UNION of two tables. There was also a local predicate coded
against the EMP table that happened to also be the join column. DB2 query transformation
is able to utilize join distribution, predicate distribution, and predicate transitive closure in
this query. This gives the optimizer even more chances to pick the correct table access
sequence for each of the joins on either side of the UNION. In addition, the optimizer can
also apply a concept called query block pruning to eliminate any query block that has an
impossible set of predicates. In this particular example the second block of the UNION has
an impossible compound predicate (A.EMPNO = ‘000020’ and A.EMPNO = ‘000010’) and
thus the query block is never executed.

This kind of query transformation and optimization is very useful for temporal queries and
data warehouse queries. Although, you do have to be aware of repetitive table access,
especially when joining to multiple table expressions or view.

Daniel L Luksetich

8/16/2015 Presented August 2015

Temporal table design is something people have been doing for years, but has now been
automated to a certain extent in DB2 10 for z/OS. This automation takes what would
normally be weeks or months or coding in applications and moves that functionality
directly into the database engine, which can be implemented in a matter of minutes!

Daniel L Luksetich

8/16/2015 Presented August 2015

Daniel L Luksetich

8/16/2015 Presented August 2015

Daniel L Luksetich

8/16/2015 Presented August 2015

Daniel L Luksetich

8/16/2015 Presented August 2015

Daniel L Luksetich

8/16/2015 Presented August 2015

DanL Database Consulting

• Long and short term consulting
• Experience on multiple platforms (z/OS, AIX, UNIX, Windows, Linux)
• DB2 SQL Education (multi-platform)
• DB2 application and database design
• DB2 performance audits

Daniel L Luksetich

8/16/2015 Presented August 2015

